Abstract
Proton therapy currently relies on computed tomography (CT) imaging despite magnetic resonance imaging’s (MRI) superior soft-tissue contrast. While synthetic CTs can be generated from magnetic resonance (MR) images, this introduces additional complexity. We present a deep learning-based dose engine enabling direct proton dose calculation from MR images to streamline workflows while maintaining Monte Carlo (MC)-level accuracy.
Type
Publication
Physics and Imaging in Radiation Oncology