Generating Synthetic Computed Tomography for Radiotherapy: SynthRAD2023 Challenge Report

Oct 1, 2024·
Evi M.C. Huijben
,
Maarten L. Terpstra
,
Arthur Jr. Galapon
,
Suraj Pai
,
Adrian Thummerer
,
Peter Koopmans
,
Manya Afonso
,
Maureen Van Eijnatten
,
Oliver Gurney-Champion
,
Zeli Chen
,
Yiwen Zhang
,
Kaiyi Zheng
,
Chuanpu Li
,
Haowen Pang
,
Chuyang Ye
,
Runqi Wang
,
Tao Song
,
Fuxin Fan
,
Jingna Qiu
,
Yixing Huang
,
Juhyung Ha
,
Jong Sung Park
,
Alexandra Alain-Beaudoin
,
Silvain Bériault
,
Pengxin Yu
,
Hongbin Guo
,
Zhanyao Huang
,
Gengwan Li
,
Xueru Zhang
,
Yubo Fan
,
Han Liu
,
Bowen Xin
,
Aaron Nicolson
,
Lujia Zhong
,
Zhiwei Deng
,
Gustav Müller-Franzes
,
Firas Khader
Xia Li
Xia Li
,
Ye Zhang
,
Cédric Hémon
,
Valentin Boussot
,
Zhihao Zhang
,
Long Wang
,
Lu Bai
,
Shaobin Wang
,
Derk Mus
,
Bram Kooiman
,
C.A. Sargeant
,
E.G. Henderson
,
Shinya Kondo
,
Shunji Kasai
,
Reza Karimzadeh
,
Boris Ibragimov
,
Thomas Helfer
,
Julien Dafflon
,
E. Wang
,
Zoltan Perko
,
Matteo Maspero
· 0 min read
Abstract
SynthRAD2023 challenge aimed to compare synthetic CT generation methods using real-world multi-center data from 1080 patients, divided into two tasks: MRI-to-CT and CBCT-to-CT. Evaluation included image similarity metrics and dose-based metrics for both proton and photon planning. The challenge attracted 617 registrants, with 22 and 17 valid submissions respectively. The best-performing teams achieved high scores in structural similarity index and gamma pass rate. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the necessity of dose evaluation when assessing the clinical applicability of synthetic CTs. SynthRAD2023 facilitated research and benchmarking of synthetic CT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy.
Type
Publication
Medical Image Analysis